

E-mail: mohamedahmed_en@yahoo.com

mohamed.mohamed@feng.bu.edu.eg

Web site: http://bu.edu.eg/staff/mohamedmohamed033

Lecture (3) – Part (1)

Superposition of Multiple Inputs

- Step 1: Set all inputs except one equal to zero.
- Step 2: Transform the block diagram to canonical form, using the transformations of Section 7.5.
- Step 3: Calculate the response due to the chosen input acting alone.
- **Step 4:** Repeat Steps 1 to 3 for each of the remaining inputs.
- **Step 5:** Algebraically add all of the responses (outputs) determined in Steps 1 to 4. This sum is the total output of the system with all inputs acting simultaneously.

Example-15: Multiple Input System. Determine the output C due to inputs R and U using the Superposition Method.

- Step 1: Put $U \equiv 0$.
- Step 2: The system reduces to

Step 3: the output C_R due to input R is $C_R = [G_1G_2/(1+G_1G_2)]R$

Step 4a:Put R = 0.Step 4b:Put -1 into a block, representing the negative feedback effect:

Let the -1 block be absorbed into the summing point:

Step 4c:

Example-15: Continue

Step 5: The total output is
$$C = C_R + C_U$$

$$= \left[\frac{G_1 G_2}{1 + G_1 G_2}\right] R + \left[\frac{G_2}{1 + G_1 G_2}\right] U$$

$$= \left[\frac{G_2}{1+G_1G_2}\right] \left[G_1R + U\right]$$

Example-16: Multiple-Input System. Determine the output C due to inputs R, U_1 and U_2 using the Superposition Method.

where C_R is the output due to R acting alone.

Rearranging the blocks, we get

where C_1 is the response due to U_1 acting alone.

Rearranging the blocks, we get

where C_2 is the response due to U_2 acting alone.

By superposition, the total output is

$$C = C_R + C_1 + C_2 = \frac{G_1 G_2 R + G_2 U_1 + G_1 G_2 H_1 U_2}{1 - G_1 G_2 H_1 H_2}$$

Example-17: Multi-Input Multi-Output Determine C_1 and C_2 due to R_1 and R_2 .

First ignoring the output C_2 .

Associate Prof. Dr. Mohamed Ahmed Ebrahim

System.

Letting $R_2 = 0$ and combining the summing points,

Hence C_{11} , the output at C_1 due to R_1 alone, is $C_{11} = G_1 R_1 / (1 - G_1 G_2 G_3 G_4)$.

Thus
$$C_1 = C_{11} + C_{12} = (G_1 R_1 - G_1 G_3 G_4 R_2)/(1 - G_1 G_2 G_3 G_4)$$

Now we reduce the original block diagram, ignoring output C_1 .

Skill Assessment Exercise:

PROBLEM: Find the equivalent transfer function, T(s) = C(s)/R(s), for the system

Answer of Skill Assessment Exercise:

ANSWER:
$$T(s) = \frac{s^3 + 1}{2s^4 + s^2 + 2s}$$

Signal-flow Graph Components

a. system; b. signal; c. interconnection of systems and signals

Building Signal-flow Graphs

a. Cascaded system nodes	$\mathbf{S} R(s) \bigcirc$	$\bigcup_{V_2(s)} \bigcup_{V_1(s)}$	$\bigcirc C(s)$	$R(s) \bigcirc \begin{array}{c} G_1(s) & G_2(s) \\ \hline V_2(s) & V_1(s) \end{array} \bigcirc \begin{array}{c} C(s) \\ \hline V_1(s) \end{array} $
b. Cascaded system	ו	<i>(a)</i>		(b)
signal-flow graph	•	0		0
c. Parallel system nodes	S	$V_1(s)$		$G_1(s) = V_1(s)$
d. Parallel system signal	$R(s)\bigcirc$	$\bigcup_{V_2(s)}$	$\bigcirc C(s)$	$R(s) \underbrace{G_2(s)}_{V_2(s)} 1 C(s)$
flow graph	• •	(20)		$G_3(s)$ 1
e. Feedback system	ן	$V_3(s)$		$V_3(s)$
nodes	5	(<i>c</i>)		(<i>d</i>)
f. Feedback system	R(s)	\cap	$\bigcirc C(s)$	$R(s)$ $\xrightarrow{1}$ $G(s)$ $C(s)$
signal-flow graph		E(s)	0 0(0)	E(s) $-H(s)$
		(<i>e</i>)		(f)

Converting a Block Diagram to a Signal-flow Graph

Problem: Convert the block diagram to a signal-flow graph.

Converting a Block Diagram to a Signal-flow Graph

- Signal-flow graph development:
- a. signal nodes;
- b. signal-flow graph;
- c. simplified
 signal-flow
 graph

Mason's Rule - Definitions

Loop gain "L_k": The product of branch gains found by traversing a path that starts at a node and ends at the same node, following the direction of the signal flow, without passing through any other node more than once. $G_2(s)H_1(s)$, $G_4(s)H_2(s)$, $G_4(s)G_5(s)H_3(s)$, $G_4(s)G_6(s)H_3(s)$ **Forward-path gain "P**_k": The product of gains found by traversing a path from input node to output node in the direction of signal flow. $G_1(s)G_2(s)G_3(s)G_4(s)G_5(s)G_7(s)$, $G_1(s)G_2(s)G_3(s)G_4(s)G_6(s)G_7(s)$, *Associate Prof. Dr. Mohamed Ahmed Ebrahim*

Mason's Rule - Definitions

Nontouching loops: loops that do not have any nodes in common. $G_2(s)H_1(s)$ does not touch $G_4(s)H_2(s)$, $G_4(s)G_5(s)H_3(s)$, and $G_4(s)G_6(s)H_3(s)$ **Nontouching-loop gain:** The product of loop gains from nontouching loops taken 2, 3,4, or more at a time. $[G_2(s)H_1(s)][G_4(s)H_2(s)]$, $[G_2(s)H_1(s)][G_4(s)G_5(s)H_3(s)]$, $[G_2(s)H_1(s)][G_4(s)G_6(s)H_3(s)]$ *Associate Prof. Dr. Mohamed Ahmed Ebrahim*

Mason's Rule

The Transfer function. C(s)/ R(s), of a system represented by a signalflow graph is

$$G(s) = \frac{C(s)}{R(s)} = \frac{\sum_{k} P_{k} \Delta_{k}}{\Delta}$$

Where

- K = number of forward paths
- P_k = the kth forward-path gain
- $\Delta = 1 \sum loop gains + \sum nontouching-loop gains taken 2 at a time \sum nontouching-loop gains taken 3 at a time + <math>\sum$ nontouching-loop gains taken 4 at a time
- $\Delta_k = 1 \cdot \log \beta$ gain terms that does not touch the kth forward path.

Transfer Function via Mason's Rule

Problem: Find the transfer function for the signal flow graph

Now

 $\Delta = 1 - [G_2(s)H_1(s) + G_4(s)H_2(s) + G_7(s)H_4(s) + G_2(s)G_3(s)G_4(s)G_5(s)G_7(s)G_8(s)] +$ $[G_2(s)H_1(s)G_4(s)H_2(s) + G_2(s)H_1(s)G_7(s)H_4(s) + G_4(s)H_2(s)G_7(s)H_4(s)] -$ $[G_2(s)H_1(s)G_4(s)H_2(s)G_7(s)H_4(s)]$

 $\Delta_1 = 1 - G7(s)H4(s)$

 $G(s) = \frac{P_1 \Delta_1}{\Delta} = \frac{[G_1(s)G_2(s)G_3(s)G_4(s)G_5(s)][1-G_7(s)H_4(s)]}{\Delta}$ Associate Prof. Dr. Mohamed Ahmed Ebrahim

Signal-Flow Graphs of State Equations

(continued) e. form dx₃/dt; f. form output

With Our Best Wishes Automatic Control (1) Course Staff

For Your Attention

Mohamed Ahmed Ebrahím